Coronary Heart Disease Is Not a Plumbing Problem

Majid Ali, M.D.

New York  212-873-2444

New Jersey . 201-996-0027


 

Endo Health for Vascular Health

Oxygen-Insulin Signaling Matrix

Insulin-Endotoxicity and Cardiovascular Diseases


Two Enemies of the Heart: Conflict and Anger

Conflict cannot be cleared by letting the steam out.

Anger sometimes can be cleared by letting the steam out.


Clearer the Knowledge,

Better the Cardiovascular Health

Two Critical Links: the More the Coronary Plaques, Fewer the Heart Deaths 

The More-Coronary-Plaques-Fewer-Deaths Paradox

Conviction Concerning the Oxygen-Insulin Signaling Matrix


What Is Endothelium?

What Are Good Endo Spices?

What Are Good Endo Herbs


 

What Hurts Endos Most?

Perverted Oxygen-Insulin Signaling Matrix.


 

Crucial Endo Factors

Endothelium Maintains the Vasodilation and Vasoconstriction Balance

inhibition and promotion of the migration and proliferation of smooth muscle cells, fibrinolysis and thrombogenesis as well as prevention and stimulation of the adhesion and aggregation of platelets.


 

What Are Endos?

The vascular endothelium is a multifunctional organ and is critically involved in modulating vascular tone and structure. Endothelial cells produce a wide range of factors that also regulate cellular adhesion, thromboresistance, smooth muscle cell proliferation, and vessel wall inflammation. Thus, endothelial function is important for the homeostasis of the body and its dysfunction is associated with several pathophysiological conditions, including atherosclerosis, hypertension and diabetes. Patients with diabetes invariably show an impairment of endothelium-dependent vasodilation.


Endo Workers

  1.  Reactive Oxygen Species
  2.  Nitric Oxide
  3. Angiotensin II
  4.  EDHF      Endothelium-derived Hyperpolarization Factor
  5. .  Prostacyclin (PGI2
  6.    Antithrombotic (NO and PGI2 both inhibit platelet aggregation) 
  7.   Prothrombotic molecules [von Willebrand factor,
  8.   Plasminogen activator inhibitor-1 (PAI-1)

 

Nitric oxide

NO is a crucial player in vascular homeostasis. NO is synthesized within endothelial cells during conversion of l-arginine to l-citrulline by endothelial nitric oxide synthase (eNOS) [15]. It is released from endothelial cells mainly in response to shear stress elicited by the circulating blood or receptor-operated substances such as acetylcholine, bradykinin, or serotonin [16]. NO diffuses to vascular smooth muscle cells (VSMC) and activates soluble guanylate cyclase (sGC), yielding increased levels of cyclic guanosine-3,5-monophosphate (cGMP) and relaxation of VSMC [1,17]. Additionally, NO also prevents leukocyte adhesion and migration, smooth muscle cell proliferation, platelet adhesion and aggregation, and opposes apoptosis and inflammation having an overall antiatherogenic effect (Fig. 3) [18].


 Therefore, understanding and treating endothelial dysfunction is a major focus in the prevention of vascular complications associated with all forms of diabetes mellitus. The mechanisms of endothelial dysfunction in diabetes may point to new management strategies for the prevention of cardiovascular disease in diabetes. This review will focus on the mechanisms and therapeutics that specifically target endothelial dysfunction in the context of a diabetic setting. Mechanisms including altered glucose metabolism, impaired insulin signaling, low-grade inflammatory state, and increased reactive oxygen species generation will be discussed. The importance of developing new pharmacological approaches that upregulate endothelium-derived nitric oxide synthesis and target key vascular ROS-producing enzymes will be highlighted and new strategies that might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated vascular complications.


Decreased formation of NO

eNOS is a dimeric enzyme depending on multiple cofactors for its physiological activity and optimal function. eNOS resides in the caveolae and is bound to the caveolar protein, caveolin-1 that inhibits its activity. Elevations in cytoplasmic Ca2 + promote binding of calmodulin to eNOS that subsequently displaces caveolin and activates eNOS


 

Vascular Function and Endothelium

The endothelium is a monolayer of cells covering the vascular lumen. For many years this cell layer was thought to be relatively inert, a mere physical barrier between circulating blood and the underlying tissues. It is now recognized, however, that endothelial cells are metabolically active with important paracrine, endocrine and autocrine functions, indispensable for the maintenance of vascular homeostasis under physiological conditions [1,2]. The multiple functions of vascular endothelium are summarized in Fig. 1 and include regulation of vessel integrity, vascular growth and remodeling, tissue growth and metabolism, immune responses, cell adhesion, angiogenesis, hemostasis and vascular permeability. The endothelium plays a pivotal role in the regulation of vascular tone, controlling tissue blood flow and inflammatory responses and maintaining blood fluidity.


 

Crucial Endo Factors

Endothelium Maintains the Vasodilation and Vasoconstriction Balance

, inhibition and promotion of the migration and proliferation of smooth muscle cells, fibrinolysis and thrombogenesis as well as prevention and stimulation of the adhesion and aggregation of platelets.


  1.  Reactive Oxygen Species
  2. Nitric Oxide
  3. Angiotensin II
  4.  EDHF      Endothelium-derived Hyperpolarization Factor
  5. .  Prostacyclin (PGI2
  6.    Antithrombotic (NO and PGI2 both inhibit platelet aggregation) 
  7.   Prothrombotic molecules [von Willebrand factor,
  8.   Plasminogen activator inhibitor-1 (PAI-1)

Endothelium-derived factors with vasodilatory and antiproliferative effects include endothelium-derived hyperpolarization factor (EDHF) [], nitric oxide (NO) [8,9] and prostacyclin (PGI2) [10], while endothelin-1 (ET-1) [11], angiotensin II and reactive oxygen species (ROS) are among the mediators that exert vasoconstrictor effects [12,13]. Endothelial cells also produce antithrombotic (NO and PGI2 both inhibit platelet aggregation) and prothrombotic molecules [von Willebrand factor, which promotes platelet aggregation, and plasminogen activator inhibitor-1 (PAI-1), which inhibits fibrinolysis] [5].

As a major regulator of vascular homeostasis, the endothelium maintains the balance between vasodilation and vasoconstriction, inhibition and promotion of the migration and proliferation of smooth muscle cells, fibrinolysis and thrombogenesis as well as prevention and stimulation of the adhesion and aggregation of platelets (Fig. 2) [5]. Disturbing this tightly regulated equilibrium leads to endothelial dysfunction.


 

Many Faces of Endothelium

Fig. 1. Multiple functions of endothelium.


 

Spices and Herbs For Endo Health

 

 

 

 

 

 

 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s