Category Archives: The Diabetes Question Series

The Diabetes Question

Majid Ali, M.D.

Does Diabetes Begin As a Rising Blood Sugar Disease Or As a Rising blood Insulin Disease?

We Will Let Call It  

The Diabetes Question.


If the answer to the diabetes question is that it begins with rising blood insulin levels,  not with rising blood glucose levels, then the following new questions arise?

Question: Is excess insulin (hyperinsulinism) toxic to the body organs?

Answer, Yes, Excess insulin is fattening, fermentiing, and inflaming. It swells the liver and shrinks the brain. It is pro-cancer, pro-inflammation, and pro-degenerative diseases. In damages endo cells which lines the inside of the entire cardiovascular system and affects blood circulation everywhere in the body. Simply stated, excess insulin (insulin toxicity) is “pro-accelerated pro-aging.” 

Question: Can insulin toxicity be assessed with blood sugar tests?

Answer. No.

Question: In most people, how long does insulin toxicity go on undetected before blood sugar levels rise enough to make diabetes diagnosable with blood sugar tests?

Answer, for five, ten, or more years?

Question: Do doctors usually always test for blood insulin level before they test for blood sugar level?

Answer, No.


 

What Must Be Known About Crucial Diabetes and Its Complications

(In this article the terms diabetes and Type 2 dabetes are used interchangeably)

Diabetes (Type 2 Diabetes,T2D) Cannot Be Diagnosed In Time Without Insulin Tests, Diabetes Cannot Be Reversed Without Insulin Intelligence. Nor Can Diabetes Complications Be Prevented or Reversed Without Insulin Intelligence.


 

Summary

Diabetes Is Not a Sugar Problem,

It Is a Problem of Insulin Toxicity (Hyperinsulinism).

Insulin Toxicity Predates Diabetes by Five, Ten, or more Years, and Directly Leads to the Disease.


 

The Cost of Neglected Insulin Testing 

Hyperinsulinism (insulin toxicity) inflicts cellular injury in nearly all cellular populations in the body.  During the  years insulin toxicity remains ,undetected and untreated, simply because insulin testing is neglected by practitioners. Why?

Blood insulin testing is not considered a standard of care by those who control $1.3 trillion yearly spending for medical care in the United States. After considering the evidence I present in this and other articles in my “Diabetes Question Series,” the readers will decide for themselves as to the real reason for neglected insulin testing.  

I Leave the answer to readers.    


What Is Insulin Intelligence?

Simply stated, excess insulin (insulin toxicity and hyperinsulinism by other names)  is a fire which burns all parts of the body. It may start in different places and spread differently but the end result is always shortened life span with different diseases.

A practitioner who answers this questions with the “diabetes-hyperinsulinism” prevailing view does not, in my opinion, serve his patients well. Anyone who answers the question with one-liners recognizing insulin as the “life-span” hormone without does not deserve anyone’s time. As for me, I want to invite you to consider these questions by taking my free-of-cost course at this web site. A library of my selected article, published papers, and short videos is included in this post. Readers interested in my book on reversing diabetes and video seminar downloads can access these materials at http://www.aliacademy.org.


 

The Diabetes Question:

Can insulin regulation be assesses with sugar tests?

Specifically, can diabetes be detected in time with fasting blood sugar test, A1c blood tests, two-hour post prandial (after a meal) blood sugar level?

The answer: Categorically not.


 

What Is Optimal Insulin Homeostasis?

First, when the blood insulin levels after a glucose challenge are quite low;

Second, blood glucose after a glucose challenge are within low physiologic range.

Third, when there is no history of diabetes in parents and grandparents.

Fourth, when there is no insulin toxicity.

Fifth, when the immune system is robust and there is no chronic . immune-inflammatory disease.

Question: Can one optimize one’s insulin homeostasis? One can only answer this question for oneself.


 

One can tell oneself lies, but nature does not grant permission to believe one’s own lies. 


Can insulin homeostasis (insulin regulation as a whole) be assessed with blood sugar tolerance  test, A1c blood tests, two-hour post prandial (after a meal) blood glucose tests, as for instance the tolerance test done for gestational diabetes?

The answer: Categorically not.


To provide a broader context for due deliberation of the above questions, please consider sets of blood insulin and glucose profiles below which were prepared with fasting and timed post-glucose challenge.
       Table  1  Control Profiles
       Table 2,3 Blood glicose tests are inappropriate for assessing insulin homestasis
       Table 4.  Hyperinsulinism in Autism Spectrum Disorder 

Table 1. Two Sets of Control Insulin and Glucose Profiles

1.Healthy control subject:. Case 1.

                 INSULIN :    <2 uIU/mL, 18, uIU/mL, 4,       and <2;    

                 GLUCOSE:    77, 168, 109, 74, 52.

2. Healthy Control Subject: Case 2  

               INSULIN :    3 uIU/mL, 11, uIU/mL, 7,   and <2;    

               GLUCOSE:    81  157, 98, 63, 52.


The Challenge in Reversing Diabetes

is not to know what any doctor thinks about diabetes and drugs used to treat diabetes but how to learn to think for yourself about insulin, health, and healing.

I suggest you spend time at http://www.alidiabetes.org 


The Most Important Question in the Prevention and Reversal of Diabetes (Type 2)

No question is more important for stemming the global tides of insulin toxicity and diabetes than the question in the title of this post.


The Answer:

Insulin levels rise first, usually by five, ten, or more years before blood sugars level rise.
Why is this important?
Because insulin toxicity continues to cause cellular damage in the liver, kidneys, heart, brain, eyes and other organs unknown to the patient and the doctor if insulin tests are not done. For more info, go to http://www.Ali Diabetes.Org for the author’s free-access course at
http://www.Ali Diabetes.Org.

https://wordpress.com/post/alidiabetes.org/2966


Table 2. Insulin Homeostasis Categories in 506 Study Subjects Without Type 2 Diabetes
Insulin Category*
Percentage of Subgroup
Mean Peak Glucose  mg/dL
(mmol/mL)
Mean Peak Insulin (uIU/mL)
Exceptional Insulin Homeostasis.N 12**
1.7%
110.2     (6.12)
14.3
Optimal Insulin Homeostasis N =126
24.9 %
121.2     (6.73)
26.7
Hyperinsulinism, Mild                N =197
38.9 %
136.5   (7.58)
58.5
Hyperinsulinism,  Moderate       N =134
26.5 %
147.0    (8.16)
109.1
Hyperinsulinism,  Severe             N =  49
9.7 %
150.0    (8.33)
(less than time and a half higher) 
231.0
(nearly 17 times higher)
#   Correlation coefficient, r value, for means of peak glucose and insulin levels in the five insulin categories is 0.84.
  *Criteria for classification: (1) Exceptional insulin homeostasis, a subgroup of optimal insulin homeostasis with fasting insulin concentration of <2 uIU/mL and mean peak insulin concentration of <20; (2) optimal insulin homeostasis, peak insulin <40 accompanied by unimpaired glucose tolerance; (3) mild insulin homeostasis, peak insulin  between <40 and 80 uU/mL;  accompanied by unimpaired glucose tolerance; ; (3) moderate insulin homeostasis, peak insulin  between <80 uU/mL and 160 uIU/mL accompanied by unimpaired glucose tolerance;  and (4) severe insulin homeostasis, peak insulin  > 160 uU/mL accompanied by unimpaired glucose tolerance.

Why Do Diabetics Need Insulin Shots?

Because Their Pancreas Has Exhausted Its Lifetime Capacity of Produce Sufficient Insulin

Note the extremely high blood insulin level (298 uIU/mL) still cannot keep the blood glucose level in the normal non-diabetic level.
Table 3. Insulin Homeostasis Categories in 178 Study Subjects With Type 2 Diabetes.
Insulin Category
Percentage of Subgroup
Mean Peak Glucose, mg/dL
(mmol/mL)
Mean Peak Insulin (uIU/mL)
Diabetic Hyperinsulinism, Mild              N =  53
29.0%
252.0   (14.00)
55.4
Diabetic Hyperinsulinism, Moderate    N =  42
24.0%
242.1   (13.45)
112.4
Diabetic Hyperinsulinism, Severe          N =  24
13.9%
224.6   (12.47)
298.0
Diabetic  Insulin Deficit                             N =  59
33.1%
294.0    (16.33)
22.9

What Is Optimal Insulin Homeostasis?

It is the lowest blood insulin levels that can keep the blood glucose levels in the normal range.
In other words, It is ideal state of insulin utilization, in which insulin toxicity does not exist, nor is insulin wasted because there is too much of it in the blood.
is not wasted .
In 2017, in a large survey of insulin and glucose profiles in the general New York metropolitan population, my colleagues and I reported a hyperinsulinism prevalence of 75.1%. Below is the link to get free access to the full text of this report:

http://www.townsendletter.com/Jan2017/insulin0117.html

Or, you may get the report on this website by entering , please use the the following words on the search box of the site:  “Shifting Focus from Glycemic Status.”

Examples of Insulin and Glucose Profiles of Individuals With Perfect Insulin Regulation

Table 1. Post-Glucose Load Insulin and Glucose Profiles of Seven Individuals With Optimal Insulin Homeostasis as Defined Above.
Fasting
½-Hr
1-Hr
2-Hr
3-hr
Insulin Profile 1. Insulin And Glucose Profiles of a 47-yr-old 5′ 5″ Male Runner Weighing 130 lbs. Who Presented With Inhalant Allergy and Hemorrhoids.
Insulin uIU/mL
1.5
9.7
9.0
4.6
<1.0
Glucose mg/dL
72
148
134
108
54
Insulin Profile 2. Insulin and Glucose Profiles of a  45-Yr-Old  5’9″Man Weighing 125 lbs. Presenting With Allergy and Dry Skin.
Insulin uIU/mL
1.0
2.7
9.8
2.7
<1.0
Glucose mg/dL
85
110
75
70
52
Insulin Profile 3. Insulin and Glucose Profiles of a 51-year-old 5’6″ Man Weighing 120 lbs. He Consulted Me for Cardiac Rhythm Disorder, Hypothyroidism and  Allergy.
Insulin uIU/mL
2.9
6.0
11.5
2.5
Glucose mg/dL
89
103
134
110
59
Insulin Profile 4. Insulin and Glucose Profiles of a 52-Yr-Old 5’1″ Woman Weighing 120 lbs. Presenting With Constipation and  Allergy.
Insulin uIU/mL
<2
17
15
6
Glucose mg/dL
78
61
72
71
Insulin Profile 5. Insulin and Glucose Profiles of a  52-Yr-Old 5’ 7″ Man Weighing 155 lbs. Presenting With Anxiety, Depression, and Diarrhea. A1c. 5.3%
Insulin uIU/mL
2.0
8.1
19.6
17.7
4
Glucose mg/dL
94
140
158
91
73
Insulin Profile 6. Insulin and Glucose Profiles of a  62-Yr-Old  5’3″ Woman Weighing 114 lbs. Presenting With Allergy and Hand Arthralgia.
Insulin uIU/mL
1.8
17.8
11.0
10.0
Glucose mg/dL
80
159
76
75
68
Insulin Profile 7. Insulin and Glucose Profiles of a 51-year-old 5’2″ Woman Weighing 120 lbs. She Consulted Me for Hypothyroidism and  Allergy
Insulin uIU/mL
3.2
11.8
2.4
1.9
Glucose mg/dL
86
110
75
70
52
Insulin Lab Reference Ranges Not  Fit for Use
In a previous report the author and his colleagues have highlighted the serious problem of inappropriate prevailing reference ranges for blood insulin concentrations.13 The data in Table 2 reproduced from that publication dramatically illustrates the dimension of this problem with findings of a survey of major laboratories in the New York City metropolitan area. The study data also calls into question the clinical value of single and random blood insulin test results. Photographs of illustrative lab reports are posted online.14

Absurd Laboratory Reference Ranges

Table 2. Upper and Lower Limits of Laboratory Insulin Reference  Ranges Expressed In uIU/mL Following a Standard Glucose Load From Six Major Clinical Laboratories in the New York Metropolitan Area.2
Laboratory
Fasting
1 Hr
2 Hr
3 Hr
Laboratory 1
1.9 – 23
8  –  112
5 – 35
Laboratory  2
2.6 – 24.9
0.0  – 121.9
0.0 – 163.5
Laboratory  3
2.6 – 24.9
8  –  112
5  –  55
3  –  20
Laboratory  4
6  – 27
20  –  120
18  –  56
8  –  22
Laboratory  5
00  – 30
30  –  200
40  – 300
50  – 150
Laboratory  6
Does not include insulin ranges in the report. Instead it includes the following note: Insulin analogues may demonstrate non-linear cross-reactivity in this essay. Interpret results accordingly. Personal communications with clinicians revealed that they do not find this laboratory note to be helpful.
 
 

Spectrum of Insulin Dysfunction and Hyperinsulinism in Autism

Table 4 presents insulin and glucose profiles of 10 patients with dysautonomia. Note that all patients suffered from allergic disorders.
Table 4. Insulin and Glucose Profiles of Individuals With Autism.
The Blood Insulin and Glucose Levels Are Expressed in uIU/mL and mg/dL respectively.
Fasting
½ Hr
1 Hr
2 Hr
3 Hr
Autism Case 1. Insulin and Glucose Profiles of 14-Yr-Old 5’ 9” Boy Weighing 115 lbs.Who Presented Without Expressive Speech Since Birth.
Insulin uIU/mL
24
300
235
211
83
Glucose mg/dL
83
129
98
95
61
Autism Case 2. Insulin Profile and Glucose Profiles of 15-Yr-Old Boy With  Autism, Allergy, and Fatigue.
Insulin uIU/mL
10.4
43.7
37.6
33.7
7.8
Glucose mg/dL
79
104
86
82
53
Autism Case 3. Insulin and Glucose Profiles of 17-Yr-Old-Boy With Autism, Eczema, And Anxiety.
Insulin uIU/mL
24.4
N/A
73.8
71.6
28.0
Glucose mg/dL
95
N/A
79
79
69
Autism Case 4.  Insulin and Glucose Profiles of 8-Yr-Old Boy Presenting With Autism, Sudden Mood Shifts, and Inhalant Allergy.
Insulin uIU/mL
6.2
40.36
41.5
24.8
3.9
Glucose mg/dL
96
192
131
109
57
Autism Case 5. Insulin and Glucose Profiles of A Three-Year-Old  Boy With Asperger’s Syndrome, Temper Tantrums, Eczema, And Inhalant Allergy.
Insulin uIU/mL
1.28
14.3
0.33
Glucose mg/dL
71
126
88
Autism Case  6. Insulin and Glucose Profiles Of A Four-Year-Old Boy Weighing 35 lbs. Limited expressive speech, Often in non-communicative trance. Mother’s Words: “Very Intelligent In Things That Interest Him.”
Insulin uIU/mL
2.3
24.2
20.2
17.8
0.8
Glucose mg/dL
89
151
102
98
79
Autism Case 7 .  Insulin and Glucose Profiles of A 5-yr-old Boy With Autism Focus Disorder. No Expressive Speech Until Age 30 Months, Single Words 10-15 Words. No Voluntary Sentences. Eczema, Recurrent Ear Infections.
Insulin uIU/mL
1.31
47.16
43.99
Glucose mg/dL
64
127
150
Autism Case 8 . Insulin And Glucose Profiles  of  A 7-Yr-Old Boy Presenting With Diagnoses of Autism, Inhalant Eczema, Food Allergy, and History of Multiple Courses of Antibiotics for Sore Throats.
Insulin uIU/mL
11.0
Glucose mg/dL
73
Autism Case 9. Insulin And Glucose Profiles  of A Six-Yr-Old Boy Presented With Autism, Hypothyroidism, Food and Inhalant Allergy.
Insulin uIU/mL
13.0
Glucose mg/dL
85
The staff of a university hospital mishandled the blood samples on two different occasions.
Autism Case 10. Insulin and Glucose Profile of A 28-yr-old Man Who Was Diagnosed With Autism with complete Absence of Expressive Speech Until Age 4 And Then Transitioned to Asperger’s Syndrome. At Age 21, He Was An Excellent Athlete But Could Speak Only To His Mother.
Insulin uIU/mL
7
174
365
71.9
7.9
Glucose mg/dL
81
178
160
85
56
Follow-Up Testing One Year Later
Insulin uIU/mL
8.2
139.9
152.0
40.82
2.82
Glucose mg/dL
88
128
125
100
47

Free-Access Library for Reversing Diabetes.

First things first: Only you can reverse your diabetes, not anyone else.

What Comes First Rising Blood Sugar Level, Or Rising Blood Insulin Level?

 

Majid Ali, M.D.

No question is more important for stemming the global tides of insulin toxicity and diabetes than the question in the title.

(Part of the Diabetes Question Series)


 

The Answer:

Insulin levels rise first, usually by five, ten, or more years before blood sugars level rise.

Why is this important?

Because insulin toxicity continues to cause cellular damage in the liver, kidneys, heart, brain, eyes and other organs unknown to the patient and the doctor if insulin tests are not done.


 

Citations for the Diabetes Question Series

MAJID ALI, M.D.

Free Access Library of Articles for Reversing Hyperinsulinism and Type 2 Diabetes

(Part of the Diabetes Question Series)


References 
1.     M. Respiratory-to-Fermentative (RTF) Shift in ATP Production in Chronic Energy Deficit Disorders. Townsend Letter for Doctors and Patients. 2004;253:64-65.
2.     Ali M. Oxygen and Aging. Book Ali M. Oxygen and Aging. (Ist ed.) New York, Canary 21 Press. Aging Healthfully Book 2000. .
3.     Ali M. Succinate Retention. In: Chouchani ET, Victoria R. Pell VR, Edoardo Gaude E, et. al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431–435.
4.     Ali M. Succinate Retention: The Core Krebs Dysfunction in Immune-Inflammatory Disorders. Townsend Letter. 2015;388:84-85.
5.     Ali M. Epidemic of Dysoxygenosis and the Metabolic Syndrome. In: The Principles and Practice of Integrative Medicine. Volume 5. Pp 246-256. Canary 21 Press. New York. 2005.
6.     Ali M. Dysox and Climatic Chaos –  The primacy of oxygen issues over carbon issues. Part I. Townsend Letter-The examiner of Alternative Medicine. 2008;299:125-132.
7.     Ali M. Oxygen, Insulin Toxicity, Inflammation, And  the Clinical Benefits of Chelation. Part I. Townsend Letter-The examiner of Alternative Medicine. 2009;315:105-109. October, 2009.
8.     Ali M. Insulin Reduction and EDTA Chelation: Two Potent and Complementary Approaches For Preventing and Reversing Coronary Disease. Oxygen, Insulin Toxicity, Inflammation, and the  Clinical Benefits of Chelation – Part II. Townsend Letter-The examiner of Alternative Medicine. 2010;323:74-79. June 2010.
9.     Ali M. Dysox Model of Diabetes and De-Diabetization Potential. Townsend Letter-The examiner of Alternative Medicine. 2007; 286:137-145.
10. Ali M. Plan for Reversing Diabetes. New York, Canary 21 Press. Aging Healthfully Book 2011.
11. Ali M. Importance of Subtyping Diabetes Type 2 Into Diabetes Type 2A and Diabetes Type 2B. Townsend Letter-The Examiner of Alternative Medicine. 2014; 369:56-58.
12. Ali M. Dasoju S, Karim N, Amin J, Chaudary D. Study of Responses to Carbohydrates and Non-carbohydrate Challenges In Insulin-Based Care of Metabolic Disorders.  Townsend Letter-The Examiner of Alternative Medicine. 2016; 391:48-51.
13. Ali M, Fayemi AO, Ali O. Dasoju S, et al. Shifting Focus From Glycemic Status to Insulin Homeostasis. .  Townsend Letter-The Examiner of Alternative Medicine. 2017;402:91-96.
14. Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic Description: eta cells through GPR40Nature;422:173–176.
15. Kahn SE, 1, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006;444, 840-846.
16. Reaven GM, Hollenbeck C, Jeng CY, et al. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDMDiabetes. 1988;371020–1024.
17. Sako, Y. & Grill, V. E. A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B cell oxidation through a process likely coupled to fatty acid oxidationEndocrinology 127, 1580–1589 (1990). |
18. Rhodes, C. J. Type 2 diabetes — a matter of Description: eta-cell life and death? Science. 2005;307:380–384.
19. Kahn, S. E., Bergman, R. N., Schwartz, M. W., Taborsky, G. J. & Porte, D. Short-term hyperglycemia and hyperinsulinemia improve insulin action but do not alter glucose action in normal humansAm. J. Physiol.1992;262:E518–E523.
20. Ali  M. Molecular Basis of Autism and Dysuatonomia – The Impeded Progenitor Cell Progression (IPCP) model of ASD and Dysautonomia.  Townsend Letter for Doctors and Patients. 2017 (In press)
21. Ali  M.  Insulin Laboratory Ranges. https://alidiabetes.org/2016/02/25/insulin-laboratory-ranges/
22. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116 :1793B1801.
23. Shulman G. Ectopic Fat in Insulin Resistance, Dyslipidemia, and Cardiometabolic Disease. N Engl J Med. 2014; 371:1131‑1141.
24. International Diabetes Federation. Diabetes Atlas. 2016. Seventh edition. www.diabetesatlas.org.
25. Kahn SE, 1, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006;444, 840-846.
26. Steven S, Hollingsworth KG, Al-Mrabeh A, et al. Very-Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiologic Changes in Responders and Nonresponders. Diabetes Care. 2016 Mar 21. pii: dc151942.
27. Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature. 2014;515, 518B522.
28. Hu, F. B. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care. 2011; 34:1249B1257.
29. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116 :1793B1801.
30. Shulman G. Ectopic Fat in Insulin Resistance, Dyslipidemia, and Cardiometabolic Disease. N Engl J Med. 2014; 371:1131‑1141.
31. International Diabetes Federation. Diabetes Atlas. 2016. Seventh edition. www.diabetesatlas.org.
32. Kahn SE, 1, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006;444, 840-846.
33. Ali M. The Principles and Practice of Integrative Medicine Volume X: Darwin, Oxygen Homeostasis, and  Oxystatic Therapies.  3 rd. Edi. (2009) New York. Institute of Integrative Medicine Press.
34. Ali M. The Principles and Practice of Integrative Medicine Volume  XI: Darwin, Dysox, and Disease. 2000. 3rd. Edi. 2008. New York.  (2009) Institute of Integrative Medicine Press.
35. Ali M. The Principles and Practice of Integrative Medicine Volume  XII: Darwin, Dysox, and Integrative Protocols. New York (2009). Institute of Integrative Medicine Press.
36. Ali M. Oxygen, Inflammation, and Castor-Cise Liver Detox. Hormones. Townsend Letter-The examiner of Alternative Medicine. 2007. Published online. http://www.townsendletter.com/Dec2007/oxygen1207.htm
37. Ali  M. Philosophy and Science of holism in healing. APPNA Journal. 2015.
38. Ali M. Hyperinsulinism Associated With Breast and Prostate Cancer. Townsend Letter-The Examiner of Alternative Medicine. 2017;402:91-96.
39. Kamada N, Seo S-U, Zhiming C, et al. Role of the gut microbiota in immunity and inflammatory disease. Nature Reviews Immunology. 2013;12:321-335.
40. Grocott M, Richardson A, Montgomery H, et a. Caudwell Xtreme Everest: a field study of human adaptation to hypoxia. Critical care 2007;11:151.
41. Bahi-Buisson N, Roze E, Dionisi C, et al. Neurological aspects of hyperinsulinism-hyperammonaemia syndrome. Dev Med Child Neurol. 2008;50:945-9.
42. Stanley SA, Kelly L, Kaasmashri N, et al. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature. 2016  531:647–650.
43. Murphy KG, Bloom SR. Gut hormones and the regulation of energy bhomeostasis. Nature. 2006;444:854-859.

 

Link to Am Important Article

Shifting Focus From Glycemic Status to Insulin Homeostasis for Stemming Global Tides of Hyperinsulinism and Type 2 Diabetes

by
Majid Ali, MD, FRCS (Eng), FACP; Alfred O. Fayemi, MD, MSc (Path), FCAP; Omar Ali, MD, FACC; Sabitha Dasoju, MB, BS; Daawar Chaudhary; Sophia Hameedi; Jai Amin; Kadin Ali; Benjamin Svoboda

http://www.townsendletter.com/Jan2017/insulin0117.html